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Bayes’ rule

• Bayes’ rule provides a convenient way of expressing the quantity we want to 
know (probability of hypothesis given data) in terms of the quantities we 
already know (probability of data if that hypothesis is true; probability of that 
hypothesis before we have any data):


• Or, in full:

P(h |d) = P(d |h)P(h)
P(d)

P(h |d) ∝ P(d |h)P(h)



• The thing we want to know is called the posterior  

• The probability of a particular set of data given a 
particular hypothesis is true is called the likelihood  

• The probability that a particular hypothesis is the 
case, before I have any evidence from the data, is 
called the prior 

• The term on the bottom (the probability of the data 
independent of the hypothesis) is actually not very 
interesting to us, since it is the same for all 
hypotheses - it’s a bit of book-keeping.

Breaking it down
P(h |d) = P(d |h)P(h)

P(d)

P(h |d)

P(d |h)

P(h)

P(d)



Bayesian language learning

• Evaluate hypotheses about language given some prior bias (perhaps 
provided by your biology?) and the data that you’ve heard

P (h|d) / P (d|h)P (h)

• h = hypothesis about the language


• d = linguistic data



It makes intuitive sense...

• If the likelihood of symptoms given a certain illness is high, this will 
increase the posterior probability of that illness


• If the prior probability of a certain illness is high, this will increase the 
posterior probability of that illness


• If a particular illness has low prior probability, we need some really 
convincing evidence to make us believe it to be true

P (illness|symptoms) � P (symptoms|illness)P (illness)
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P (h|d) / P (d|h)P (h)



Bayesian language learning

• This modelling approach provides several advantages for our purposes


• Quantitative (we can put numbers on stuff)


• Simple (just multiplying and dividing)


• Transparent (nice clean representation of the role of prior knowledge)


• Surprisingly powerful (as we’ll see)

P (h|d) / P (d|h)P (h)



Word learning



Learning the meaning of words

“Doggy” = ?

Doggy!



Quine (1960): meaning 
underdetermined by data

Doggy!

There are in principle infinitely many possible 
meanings for “doggy” which would be consistent with 
this usage, and any possible sequences of usages

• The four legged animal

• The two legged animal

• Some part of either (the leg, the hat, …)

• Some property of some part (the length 

of the leg, the material of the hat)

• Nothing to do with what you’re seeing 

(“I’m hungry”)

• Something weirder (a wet nose and a 

waggable tail, but only until Scotland 
win the World Cup)



Learners must have some constraints on word 
meaning

Minimally: to rule out the extremely wacky word meanings


But maybe they are more detailed:


• Expectations about meanings (e.g. words refer to whole 
objects, words refer to basic-level categories, words 
generalise by shape of referent, …: Macnamara, 1972; 
Markman, 1989; Landau, Smith & Jones, 1988)


• Expectations about words (e.g. word meanings are mutually 
exclusive: Markman & Wachtel, 1988)


• …



If the constraints on learning are minimal, how is 
rapid word learning possible? 

If the constraints on learning are strong, how do 
we learn words that don’t fit the constraints?



Word learning as Bayesian inference

• Xu, F., & Tenenbaum, J. B. (2007) Word learning as Bayesian Inference. 
Psychological Review, 114, 245-272 


• You are trying to use evidence provided by instances of word use to infer 
unobservable word meaning 

hypotheses = word meanings


data = labelling events


likelihood = how word meanings lead to labelling events


prior = the kind of meanings I expect words to have

P (h|d) / P (d|h)P (h)

https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf


This is a fep

What does fep mean?


A.  Dalmatian


B.  Dog


C.  Animal



These are also feps

What does fep mean?


A.  Dalmatian


B.  Dog


C.  Animal



Here are 3 daxes

What does dax mean?


A.  Dalmatian


B.  Dog


C.  Animal



Did you infer different meanings for fep and dax? 
What factors influenced your decision?



dalmatian’

dog’

animal’



Quantifying a  
suspicious coincidence

3 hypotheses under consideration

P (h|d) / P (d|h)P (h)

fep=dalmatian’ 

fep=dog’ 

fep=animal’ 



Quantifying a  
suspicious coincidence

Likelihood: P(

P (h|d) / P (d|h)P (h)

fep=dalmatian’ 

fep=dog’ 

fep=animal’ 

| fep=dalmatian’ ) = ???
“fep”
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suspicious coincidence

Likelihood: P(
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Quantifying a  
suspicious coincidence

P(

P (h|d) / P (d|h)P (h)

| fep=dog’ ) = 1/6
“fep”

| fep=dalmatian’ ) = 1/3
“fep”

P(

| fep=animal’ ) = 1/9
“fep”

P(



Quantifying a  
suspicious coincidence

P(

P (h|d) / P (d|h)P (h)

| fep=dog’ ) = 1/6 x 1/6 x 1/6 = 1/216
“fep” “fep” “fep”

| fep=dalmatian’ ) = 1/3 x 1/3 x 1/3 = 1/27
“fep” “fep” “fep”

P(

| fep=animal’ ) = 1/9 x 1/9 x 1/9 = 1/729
“fep” “fep” “fep”

P(
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Quantifying a  
suspicious coincidence

P(

P (h|d) / P (d|h)P (h)

| dax=dog’ ) = 1/6 x 1/6 x 1/6 = 1/216

| dax=dalmatian’ ) = 1/3 x 0 x 0 = 0P(

| dax=animal’ ) = 1/9 x 1/9 x 1/9 = 1/729P(

“dax” “dax” “dax”

“dax” “dax” “dax”

“dax” “dax” “dax”



Xu, F., & Tenenbaum, J. B. (2007) Word learning as 
Bayesian Inference. Psychological Review, 114, 
245-272 

https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf


Their task

These are feps

Show me all the feps



node of the tree corresponds to a cluster of objects that are on
average more similar to each other than to other nearby objects.
The height of each node represents the average pairwise dis-
similarity of the objects in the corresponding cluster. The length
of the branch above each node measures how much more
similar on average are that cluster’s members to each other than
to objects in the next nearest cluster—that is, how distinctive
that cluster is.

Each of the main classes underlying the choice of stimuli
corresponds to a node in the tree: vegetable (EE), vehicle (HH),
animal (JJ), pepper (J), truck (T), dog (R), green pepper (F),
yellow truck (G), and Dalmatian (D). Most of these clusters are
highly distinctive (i.e., well separated from other clusters by
long branches), as one would expect for the targets of kind
terms.2 Other easily describable nodes include Cluster U, con-
taining all and only the construction vehicles (tractor, bull-
dozer, and crane), and Cluster II, containing all and only the

mammals. The only clusters that do not appear to correspond to
conceivably lexicalizable concepts are two that are defined only
by subtle perceptual variation below the subordinate level:
Cluster A, including two of the three Dalmatians, and Cluster B,
including two of the three green peppers. We take each cluster
to correspond to one hypothesis in H, with the exception of
these two clusters below the subordinate level. In so doing, we
are assuming that each learner maintains only a single hypoth-
esis space and that its structure does not change as new words

2 A notable exception is the cluster corresponding to trucks (T), which is
barely separated from the next highest cluster (V), which contains the
trucks plus a long yellow school bus. Cluster V itself is fairly well
separated from the next highest cluster, suggesting that the perceptually
basic category here is not quite trucks but something more like “truck-
shaped motor vehicles.”

Figure 7. Hierarchical clustering of similarity judgments yields a taxonomic hypothesis space for Bayesian
word learning. Letter codes refer to specific clusters (hypotheses for word meaning): vegetable (EE), vehicle
(HH), animal (JJ), pepper (J), truck (T), dog (R), green pepper (F), yellow truck (G), and Dalmatian (D). The
clusters labeled by other letter codes are given in the text as needed. Numbers indicate the objects located at each leaf
node of the hierarchy, keyed to the object numbers shown in Figures 3 and 4. The height of a cluster, as given by the
vertical axis on the left, represents the average within-cluster dissimiliarity of objects within that cluster.

261WORD LEARNING AS BAYESIAN INFERENCE



Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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Model predictions
P (h|d) / P (d|h)P (h)
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matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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weak binary measure of consistency in the likelihood rather than
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puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.
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tion gradients observed given one example than to the all-or-none
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weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.
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Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.
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Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.

263WORD LEARNING AS BAYESIAN INFERENCE



Why might adults and children come to this word 
learning task with different priors?



Coming up next!

• This week’s lab: a simple Bayesian model of word learning


• Basic framework for Bayesian models


• Play around with suspicious coincidences, the prior


• Next week: a Bayesian model of frequency learning


• No pre-reading for lecture 3: catch up on the intro to 
probabilities and Bayes set for today…


• …or read Xu & Tenenbaum (2007), it’s very rich
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