Simulating Language 2021, week 3 pre-reading questions, part 1 answers

The first few questions are on the basics of probabilities.

1. The weather forecaster tells me that tomorrow there is a 25% chance of rain. Assuming they are an accurate forecaster, what is the probability that it will rain tomorrow?

The correct answer is 0.25 . Probabilities sum to 1 : probability 1 means something will definitely happen (or it will always happen, if you prefer to think about it that way), probability 0 means something will definitely not happen / never happen, probability 0.25 means it will happen about a quarter of the time, which is the same as saying there is a 25% chance of it happening.

2. What is the probability that it will not rain tomorrow?

The correct answer is 0.75 : the probability that it will not rain is 1 minus the probability that it will rain, which is $1-0.25$, which is 0.75 . We know for sure it will either rain or not rain tomorrow, so the probability of those two events taken together must sum to 1 (i.e. it will definitely either rain or not rain tomorrow). We already know that the probability of it raining is 0.25 , so the remainder of the probability must be on the other event, that it does not rain.

3. Which of the following is not a probability?

There aren't probabilities: -0.1, 1.1. Probabilities must like between 0 (something will never happen) or 1 (something will always happen), so values lower than 0 or higher than 1 are not probabilities.

The next bunch of questions are on likelihoods: the probability of some event happening given that some state of affairs is true.
4. Consider an unbiased, 'fair' dice*. What is the probability that any roll of the dice will produce a 1? Note: in the notation used in the reading, we would write this probability as something like $\mathrm{p}(1 \mathrm{I}$ fair-dice), i.e. the probability of getting a 1 given that we are rolling the fair dice.

[^0]The correct answer here is $1 / 6$. There are 6 possible outcomes for this dice: it will roll a 1 , it will roll a 2 , etc etc, up to it will roll a 6 . Since the dice is fair, each of those outcomes is equally likely, so each gets an equal share of the available probability. Since we know that every time we roll a dice it will come up as something (i.e. it won't roll forever), we have a probability mass of 1 to be divided up between the 6 possible outcomes (rolling a 1, a 2, etc). That means each outcome has a probability of 1 divided by 6 , or $1 / 6$, or 1 in 6 .

5. What is the probability that it will roll a 6 ?

The same answer, $1 / 6$, for the same reason. Even though rolling a 6 is kind of exciting, if the dice is fair it's no more or less likely than rolling a 1.

6. What is the probability that it will roll a 3 ?

The same answer, $1 / 6$, for the same reason.
7 What is the probability that it will roll a number higher than 3 (i.e. 4, 5 or 6)?
The correct answer is $1 / 2$. There are a couple of ways you can arrive at this answer.
One would be to note that the dice, when viewed from this perspective, can do two things: it can roll a number less than or equal to 3 , or it can roll a number higher than 3 . There are 3 ways it can come up as less than or equal to 3 (you can roll a 1, 2 or 3), and 3 ways it can come up as higher than 3 (you can roll a 4,5 or 6). So there are two possibilities, which seem equally likely, therefore they each have probability $1 / 2$.

Another way to do it would be to sum the individual probabilities of each dice roll. We already know that the probability of rolling a 1 is $1 / 6$. The probability of rolling a 2 is $1 / 6$. The probability of rolling a 3 is $1 / 6$. So the probability of rolling a 1 , 2 or 3 is $1 / 6+1 / 6+1 / 6$, which is $3 / 6$, which is the same as $1 / 2$: we sum the probabilities if we are interested in whether one event or another event will happen (assuming those events are mutually exclusive, which they are here: the dice can't simultaneously come up as a 1 and a 2). Similarly, the probability of rolling a 4 or a 5 or a 6 is $1 / 6+1 / 6+1 / 6=3 / 6=1 / 2$.

8. How about if we roll the dice twice? What is the probability that it will produce a 6 then a 6 ?

The correct answer is $1 / 36$.
In answering question 7, we were interested in situations where one of several possible events occurred: either the dice will roll a 1 or it will roll a 2 or it will roll a 3, etc - there we added probabilities. Here we are interested in sequences or combinations of independent events, in which case we multiply the probabilities. The probability of rolling a 6 on a single roll is $1 / 6$. So the probability of rolling a 6 then rolling a 6 is $1 / 6$ * $1 / 6$, which is $1 / 36$.

If you don't believe me about multiplying probabilities, try this: write down all the possible combinations of what you get on the first roll then what you get on the second roll. This gives you:

1 then 1

1 then 2
1 then 3
1 then 4
1 then 5
1 then 6
2 then 1
2 then 2
2 then 6
3 then 1

3 then 6
6 then 6
If you do this, you will notice that there are 36 possible outcomes of rolling a dice twice. Only one of then is the desired " 6 then 6 " combination, and since the dice is fair, every one of these 36 outcomes is equally probable. The probability of rolling a 6 then a 6 must therefore be 1 in 36 . If you get confused when you are manipulating probabilities, it can often be helpful to enumerate the possible outcomes in this way, i find it helps me be clear about what I am doing.

9. A 3 then a 5?

Again, the correct answer is $1 / 36$, for the same reasons.

10. A number higher than 3 on both rolls?

The correct answer is $1 / 4$. We already worked out that the probability of rolling a number higher than 3 is $1 / 2$. So the probability of doing it twice in a row is $1 / 2$ * $1 / 2=1 / 4$. Or if you prefer enumeration, you can use the exhaustive list of 36 combinations you wrote down for question 8 , and verify that 18 of those 36 possibilities involve two rolls greater than 3 :
$18 / 36=1 / 2$.

[^0]: * For grammar puritans: consider an unbiased, 'fair' die.
 * For D\&Ders: it's a D6.

